Subspace distribution clustering hidden Markov model
نویسندگان
چکیده
Most contemporary laboratory recognizers require too much memory to run, and are too slow for mass applications. One major cause of the problem is the large parameter space of their acoustic models. In this paper, we propose a new acoustic modeling methodology which we call subspace distribution clustering hidden Markov modeling (SDCHMM) with the aim at achieving much more compact acoustic models. The theory of SDCHMM is based on tying the parameters of a new unit, namely the subspace distribution, of continuous density hidden Markov models (CDHMMs). SDCHMMs can be converted from CDHMMs by projecting the distributions of the CDHMMs onto orthogonal subspaces, and then tying similar subspace distributions over all states and all acoustic models in each subspace. By exploiting the combinatorial effect of subspace distribution encoding, all original full-space distributions can be represented by combinations of a small number of subspace distribution prototypes. Consequently, there is a great reduction in the number of model parameters, and thus substantial savings in memory and computation. This renders SDCHMM very attractive in the practical implementation of acoustic models. Evaluation on the Airline Travel Information System (ATIS) task shows that in comparison to its parent CDHMM system, a converted SDCHMM system achieves sevento 18-fold reduction in memory requirement for acoustic models, and runs 30%–60% faster without any loss of recognition accuracy.
منابع مشابه
Microsoft Word - Hybridmodel2.dot
Today’s state-of-the-art speech recognition systems typically use continuous density hidden Markov models with mixture of Gaussian distributions. Such speech recognition systems have problems; they require too much memory to run, and are too slow for large vocabulary applications. Two approaches are proposed for the design of compact acoustic models, namely, subspace distribution clustering hid...
متن کاملSubspace Distribution Clustering HMM for Chinese Digit Speech Recognition
As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribution Clustering Hidden Markov Model (SDCHMM), derived from the Continuous Density Hidden Markov Model (CDHMM), is introduced. With parameter tying, a new method to train SDCHMMs is de...
متن کاملAn Acoustic-Phonetic and a Model-Theoretic Analysis of Subspace Distribution Clustering Hidden Markov Models
Abstract. Recently, we proposed a new derivative to conventional continuous density hidden Markov modeling (CDHMM) that we call “subspace distribution clustering hidden Markov modeling” (SDCHMM). SDCHMMs can be created by tying low-dimensional subspace Gaussians in CDHMMs. In tasks we tried, usually only 32–256 subspace Gaussian prototypes were needed in SDCHMM-based system to maintain recognit...
متن کاملTraining of subspace distribution clustering hidden Markov model
In [2] and [7], we presented our novel subspace distribution clustering hiddenMarkovmodels (SDCHMMs)which can be converted from continuous density hidden Markov models (CDHMMs) by clustering subspaceGaussians in each stream over all models. Though such model conversion is simple and runs fast, it has two drawbacks: (1) it does not take advantage of the fewer model parameters in SDCHMMs — theore...
متن کاملTraining of context-dependent subspace distribution clustering hidden Markov model
Training of continuous density hidden Markov models (CDHMMs) is usually time-consuming and tedious due to the large number of model parameters involved. Recently we proposed a new derivative of CDHMM, the subspace distribution clustering hidden Markov model (SDCHMM) which tie CDHMMs at the ner level of subspace distributions, resulting in many fewer model parameters. An SDCHMM training algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Speech and Audio Processing
دوره 9 شماره
صفحات -
تاریخ انتشار 2001